Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura.
نویسندگان
چکیده
There is interest in pinpointing genes and physiological mechanisms explaining intra- and interspecific variations in cold tolerance, because thermal tolerance phenotypes strongly impact the distribution and abundance of wild animals. Laboratory studies have highlighted that the capacity to preserve water and ion homeostasis is linked to low temperature survival in insects. It remains unknown, however, whether adaptive seasonal acclimatization in free-ranging insects is governed by the same physiological mechanisms. Here, we test whether cold tolerance in field-caught Drosophila subobscura is high in early spring and lower during summer and whether this transition is associated with seasonal changes in the capacity of flies to preserve water and ion balance during cold stress. Indeed, flies caught during summer were less cold tolerant, and exposure of these flies to sub-zero temperatures caused a loss of haemolymph water and increased the concentration of K(+) in the haemolymph (as in laboratory-reared insects). This pattern of ion and water balance disruption was not observed in more cold-tolerant flies caught in early spring. Thus, we here provide a field verification of hypotheses based on laboratory studies and conclude that the ability to maintain ion homeostasis is important for the ability of free-ranging insects to cope with chilling.
منابع مشابه
Sodium distribution predicts the chill tolerance of Drosophila melanogaster raised in different thermal conditions.
Many insects, including the model holometabolous insect Drosophila melanogaster, display remarkable plasticity in chill tolerance in response to the thermal environment experienced during development or as adults. At low temperatures, many insects lose the ability to regulate Na(+) balance, which is suggested to cause a secondary loss of hemolymph water to the tissues and gut lumen that concent...
متن کاملParallel ionoregulatory adjustments underlie phenotypic plasticity and evolution of Drosophila cold tolerance.
Low temperature tolerance is the main predictor of variation in the global distribution and performance of insects, yet the molecular mechanisms underlying cold tolerance variation are poorly known, and it is unclear whether the mechanisms that improve cold tolerance within the lifetime of an individual insect are similar to those that underlie evolved differences among species. The accumulatio...
متن کاملCold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome
Cold tolerance is a key determinant of insect distribution and abundance, and thermal acclimation can strongly influence organismal stress tolerance phenotypes, particularly in small ectotherms like Drosophila. However, there is limited understanding of the molecular and biochemical mechanisms that confer such impressive plasticity. Here, we use high-throughput mRNA sequencing (RNA-seq) and liq...
متن کاملExpression analysis of K+ transporter genes associated with salinity tolerance in grape
Molecular information of K+ accumulation in grapes is strongly required. Under salinity condition potassium transporters are inhibited by Na+. The aim of this study was to investigate the effects of salinity on the expression of K+ transporter genes in grape. Based on the previous screening study on 18 grape genotypes, ‘H6’ and ‘Gharashani’ (tolerant) and ‘Shirazi’ and ‘GhezelUzum’ (sensitive) ...
متن کاملConcurrent effects of cold and hyperkalaemia cause insect chilling injury.
Chilling injury and death are the ultimate consequence of low temperature exposure for chill susceptible insects, and low temperature tolerance is considered one of the most important factors determining insect distribution patterns. The physiological mechanisms that cause chilling injury are unknown, but chronic cold exposure that causes injury is consistently associated with elevated extracel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biology letters
دوره 12 5 شماره
صفحات -
تاریخ انتشار 2016